

Produktion und Nachhaltigkeit

Episode 2: Entscheidungsunterstützung

Prof. Dr. Grit Walther RWTH Aachen

Übersicht der Lerneinheit

Episode 1:

Strategien und Planungsaufgaben

Episode 2:

Entscheidungsunterstützung

Episode 3:

Interview

Lernziele dieser Episode

Lernziel 1:

Sie kennen Rahmenbedingungen, Planungsaufgaben und Planungsunsicherheiten bei der Gestaltung von Produktionsnetzwerken für synthetische Biokraftstoffe.

Lernziel 2:

Sie kennen die Potenziale, Herausforderungen und Planungsunsicherheiten des Einsatzes von aufgearbeiteten Ersatzteilen im Rahmen eines Closed Loop Supply Chain Managements.

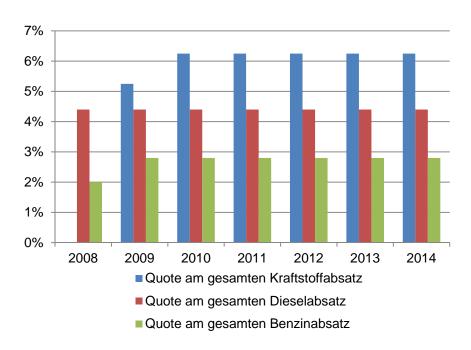
Lernziel 3:

Sie können am Beispiel der dargestellten Fallstudien die Komplexität der Planungsaufgaben aufzeigen und erläutern, warum zur Lösung stoffstrombasierte Entscheidungsunterstützungssysteme notwendig sind.

Gliederung

- Fallstudie 1:
 Gestaltung von Produktionsnetzwerken für synthetische
 Biokraftstoffe
 - Rahmenbedingungen
 - Entscheidungsunterstützungssystem
 - Anwendung
- Fallstudie 2:
 Aufarbeitung von Ersatzteilen in Closed Loop Supply Chains

3 Fazit



Rahmenbedingungen

Biokraftstoffquoten-Gesetz:

Mindestanteile von Biokraftstoffen am Kraftstoffabsatz

Rahmenbedingungen

Biokraftstoffquoten-Gesetz:

Mindestanteile von Biokraftstoffen am Kraftstoffabsatz

Biokraftstoffe der 1. Generation

"Biokraftstoff E10 verteuert Lebensmittel"
"Das Auto isst mit"

[Süddeutsche Zeitung, 11.04.2011]

"E10-Biosprit ist gefährlich für alle Autos"

"Das neue Benzin könnte für die Motoren erheblich schädlicher sein als bislang bekannt. BMW und Daimler wollen einen neuen Verdacht gemeinsam untersuchen." [Die Welt, 06.03.2011]

Rahmenbedingungen

Biokraftstoffquoten-Gesetz:

Mindestanteile von Biokraftstoffen am Kraftstoffabsatz

Biokraftstoffe der 1. Generation

"Biokraftstoff E10 verteuert Lebensmittel" "Das Auto isst mit"

[Süddeutsche Zeitung, 11.04.2011]

"E10-Biosprit ist gefährlich für alle Autos"

"Das neue Benzin könnte für die Motoren erheblich schädlicher sein als bislang bekannt. BMW und Daimler wollen einen neuen Verdacht gemeinsam untersuchen." [Die Welt, 06.03.2011]

- Reststoffe als Rohstoff
- Hohe Flächenausbeuten
- Hohes CO₂-Minderungspotential
- Technische Verträglichkeit

Rahmenbedingungen

Biokraftstoffquoten-Gesetz:

Mindestanteile von Biokraftstoffen am Kraftstoffabsatz

Biokraftstoffe der 1. Generation

"Biokraftstoff E10 verteuert Lebensmittel"
"Das Auto isst mit"

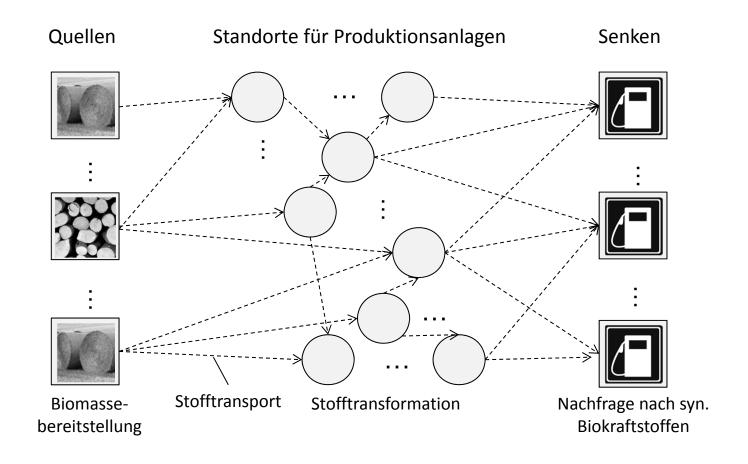
[Süddeutsche Zeitung, 11.04.2011]

"E10-Biosprit ist gefährlich für alle Autos"

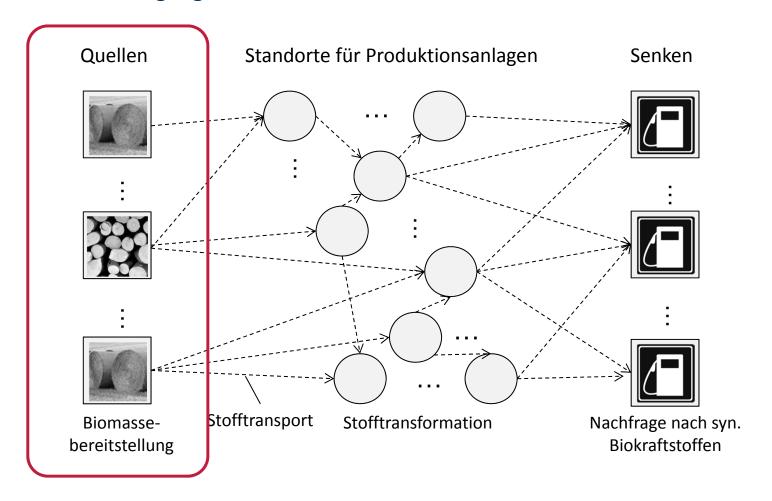
"Das neue Benzin könnte für die Motoren erheblich schädlicher sein als bislang bekannt. BMW und Daimler wollen einen neuen Verdacht gemeinsam untersuchen." [Die Welt, 06.03.2011]

Synthetische Biokraftstoffe der 2. Generation

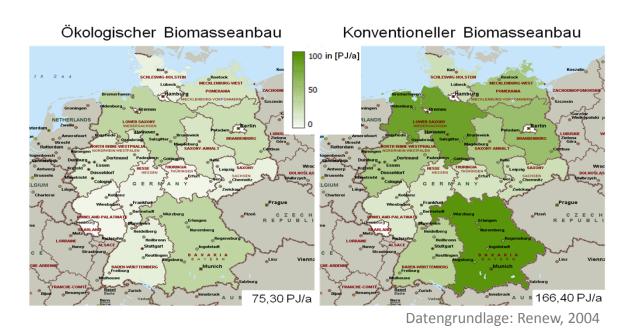
- Reststoffe als Rohstoff
- Hohe Flächenausbeuten
- Hohes CO₂-Minderungspotential
- Technische Verträglichkeit



Entscheidungsunterstützung zur Gestaltung von Netzwerken für die Produktion von synthetischen Biokraftstoffen der 2. Generation


Rahmenbedingungen

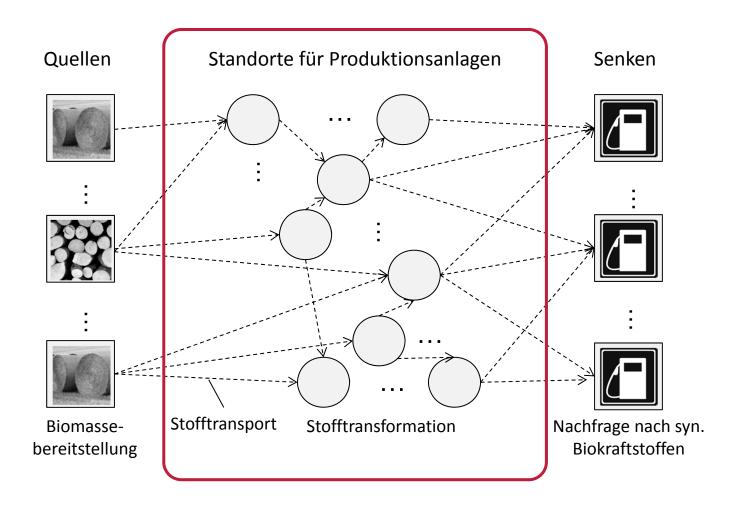
Rahmenbedingungen



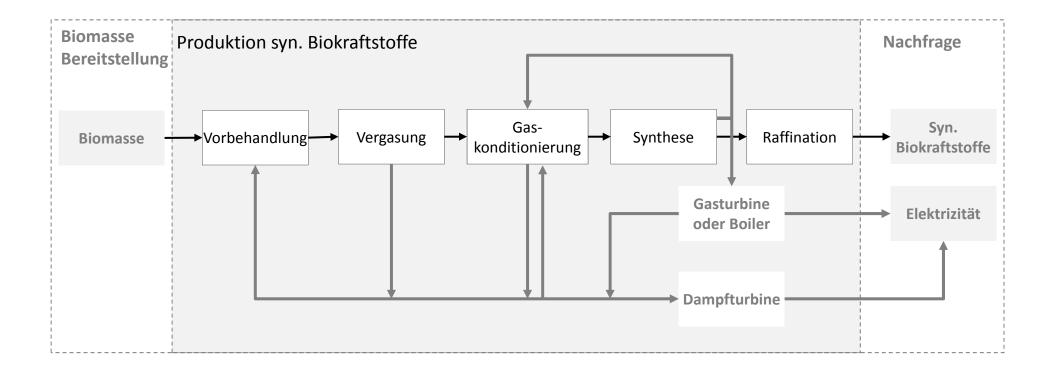
Bildnachweis: Schatka 2011

Rahmenbedingungen

Art und Menge der zur Verfügung stehenden Biomasse wird determiniert durch: Anbauszenarien, Flächenausbeuten, Preise, Nutzungsoptionen, ...



Das zukünftig verfügbare Biomassepotenzial ist unsicher hinsichtlich Massen, Preise und Qualitäten


Rahmenbedingungen

Generisches Grundfließbild

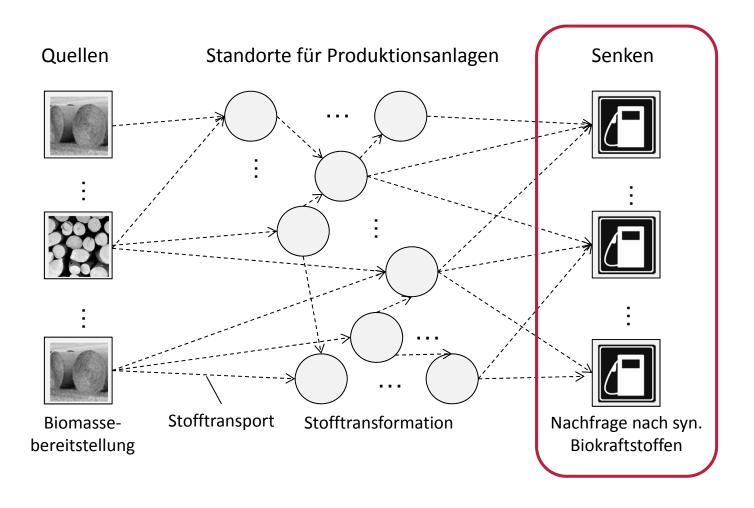
Rahmenbedingungen

Zentrale Verfahren

- Transformation von Biomasse in Biokraftstoff erfolgt in einer (zentralen)
 Anlage
- Beta-Anlage der Fa. Choren in Freiberg, Kap. 18 Mio. I/a

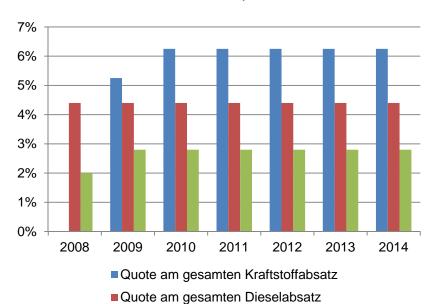
Dezentrale Verfahren

- In einem ersten Schritt erfolgt die Transformation von Biomasse in ein energiereiches Zwischenprodukt in einer dezentralen Anlage nahe am Ort der Biomasseproduktion
- In einem zweiten Schritt wird dieses Zwischenprodukt in einer zentralen Anlage in Biokraftstoff umgewandelt.
- Forschungsanlage (Lurgi, Forschungszentrum Karlsruhe)



Unsicherheiten bezüglich der Prozessausbeuten und Investitionen für die großindustrielle Produktion sowie bezüglich der vorteilhaften Anlagenkonzepte und Kapazitäten

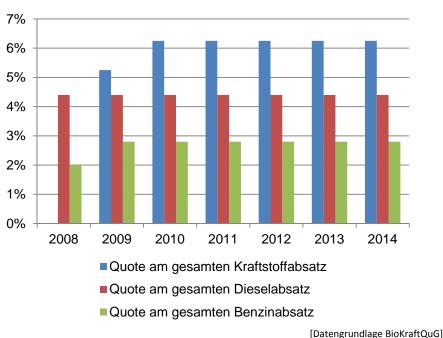
Rahmenbedingungen

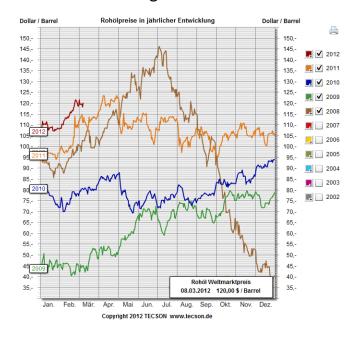


Rahmenbedingungen

Biokraftstoffquoten

Quote am gesamten Benzinabsatz

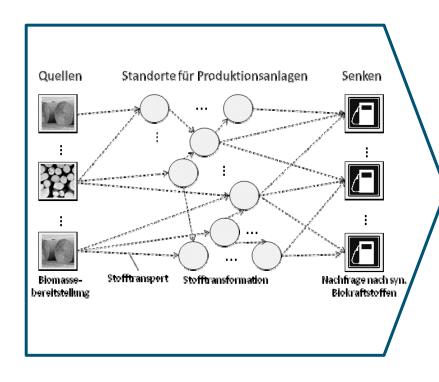

[Datengrundlage BioKraftQuG]



Rahmenbedingungen

Biokraftstoffquoten

Preisentwicklungen am Kraftstoffmarkt

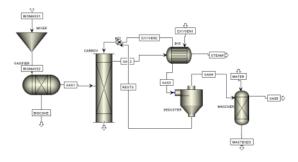

Die Nachfrage nach synthetischen Biokraftstoffen wird durch (unsichere) gesetzliche Vorgaben und Preisentwicklungen am Kraftstoffmarkt determiniert.

Entscheidungsunterstützungssystem

Anforderungen

Berücksichtigung von

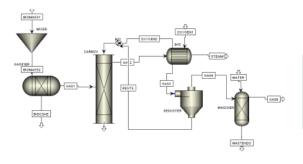
- Komplexen Produktionsprozessen
- Stofftransformationen
- Zentralen und dezentralen Anlagenkonzepten
- Flexiblen Netzwerkstrukturen
- Größendegressionseffekten
- Entwicklungen im Zeitverlauf
- Unsicherheiten


© O O O

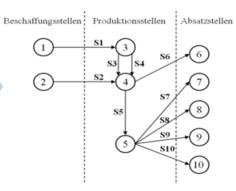
Entscheidungsunterstützungssystem

Ermittlung der (potenziellen) Stoff- und Energieströme

Technische Simulation



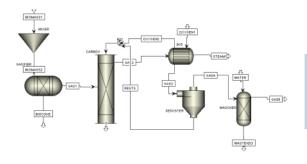
Entscheidungsunterstützungssystem


Ermittlung der (potenziellen) Stoff- und Energieströme

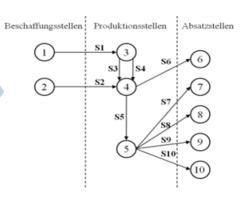
Technische Simulation

Input-Output Modelle

Aggregation der Stoffund Energiebilanzen



Entscheidungsunterstützungssystem


Ermittlung der (potenziellen) Stoff- und Energieströme

Technische Simulation

Input-Output Modelle

Aggregation der Stoffund Energiebilanzen

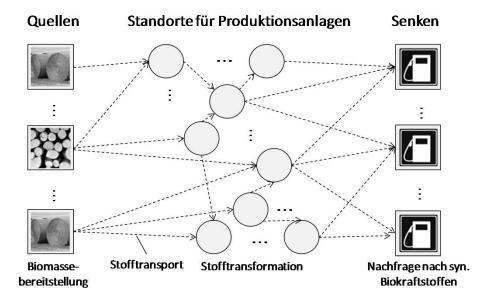
Stoff- und Energieströme als Grundlage

- der Technologie- und Kapazitätsplanung
- der Ermittlung der prozessbedingten variablen Zahlungen

Technische Prozessdarstellungen als Basis für die Investitionsschätzung

[Walther 2010; Schatka 2011]

Bildnachweis: Schatka 2011



$Ent scheid ung sunter st \"{u}tzung ssystem$

Optimierungsmodell

[Walther 2010; Schatka 2011]

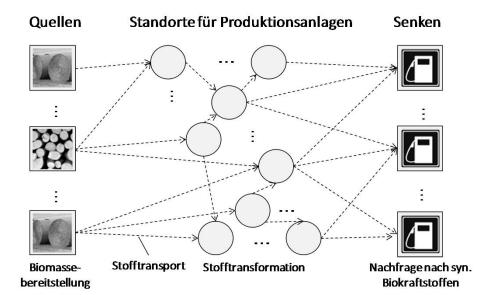
Entscheidungen betreffend:

Netzwerkstruktur	Anlageneröffnung (Verfahren, Kapazität, Standort, Periode)			
Stofftransport	Biomasse Zwischenproduktmasse syn. Biokraftstoffmasse (Bezugsquelle bzwanlage, Zielanlage bzwsenke, Periode)			
Stofftransformation	Biomasse oder Zwischenproduktmasse (Anlage, Periode)			

Entscheidungsunterstützungssystem

Optimierungsmodell

Max Kapitalwert


= diskontierte

(Investitionen

- + stoffflussbedingte Zahlungen
- + prozessbedingte Zahlungen)

u.d.N.

- Massenbilanzen
- Kapazitätsrestriktionen
- Quotenvorgaben
- Variablendeklarationen & Nichtnegativitäts-Bedingungen

Entscheidungen betreffend:

Netzwerkstruktur	Anlageneröffnung (Verfahren, Kapazität, Standort, Periode)					
Stofftransport	Biomasse Zwischenproduktmasse syn. Biokraftstoffmasse (Bezugsquelle bzwanlage, Zielanlage bzwsenke, Periode)					
Stofftransformation	Biomasse oder Zwischenproduktmasse (Anlage, Periode)					

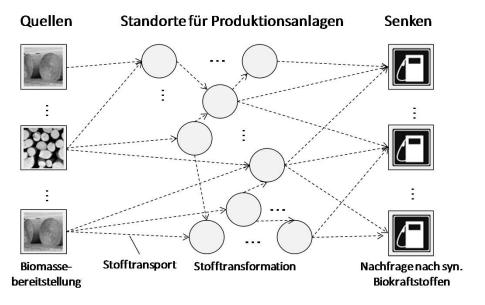
[Walther 2010; Schatka 2011]

Entscheidungsunterstützungssystem

Optimierungsmodell

[Walther 2010; Schatka 2011]

Max Kapitalwert


= diskontierte

(Investitionen

- + stoffflussbedingte Zahlungen
- + prozessbedingte Zahlungen)

u.d.N.

- Massenbilanzen
- Kapazitätsrestriktionen
- Quotenvorgaben
- Variablendeklarationen & Nichtnegativitäts-Bedingungen

Entscheidungen betreffend:

Netzwerkstruktur	Anlageneröffnung (Verfahren, Kapazität, Standort, Periode)					
Stofftransport	Biomasse Zwischenproduktmasse syn. Biokraftstoffmasse (Bezugsquelle bzwanlage, Zielanlage bzwsenke, Periode)					
Stofftransformation	Biomasse oder Zwischenproduktmasse (Anlage, Periode)					

Optimierungsmodell zur integrierten Technologie-, Kapazitäts- und Standortplanung

Bildnachweis: Schatka 2011

Entscheidungsunterstützungssystem

Szenario- und Sensitivitätsanalyse

Unsicherheit	Ausprägung	Basis	S2	S3	S4	S5
Biomassepotential	Ökologischer Anbau	Х		Х	Х	Х
	Hohe Flächenausbeuten		Х			
Investitionen für Produktionstechnologien	Basis Investitionen	Х	Х		Х	X
	Höhere Investitionen			Х		
Nachfrage nach synthetischem Biokraftstoff	Geringer als Quote				Х	
	Biokraftstoffquote	Х	Х	Х		
	Höher als Quote					Х

Szenario- und Sensitivitätsanalyse für die Berücksichtigung von Unsicherheiten

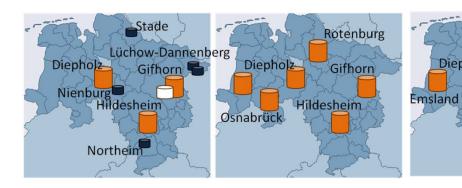
[Schatka 2011]

Anwendung

Fallbeispiel Niedersachsen

→ Aufbau einer neuen Infrastruktur

[Walther et al. 2012]



Anwendung

Fallbeispiel Niedersachsen

→ Aufbau einer neuen Infrastruktur

[Walther et al. 2012]

Fallbeispiel Europa

→Integration in bestehende Raffinerie-Infrastruktur

[Schatka 2011]

Diepholz

Gifhorn

Hildesheim

Anwendung

Handlungsempfehlungen

... an potenzielle Investoren

- Zentrale Anlagenkonzepte in Regionen mit hohem Biomassepotenzial
- Kleinere Anlagenkapazitäten in regional ausgerichteten Produktionsnetzwerken
- Sukzessiver Kapazitätsausbau
- Identifikation robuster Anlagenstandorte: Identifikation von Standorten, die gute Lösungen für verschiedene Entwicklungen sind

... an umweltpolitische Entscheidungsträger

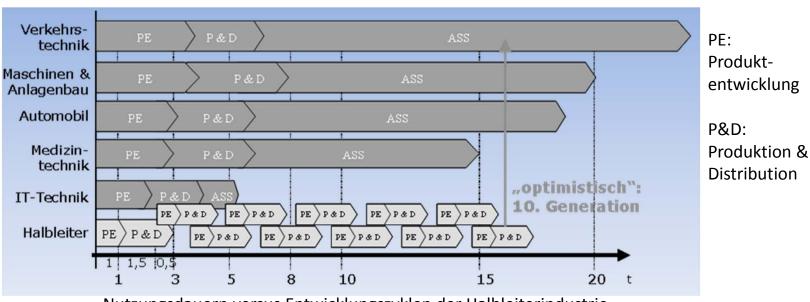
- Langfristig stabile politische Rahmenbedingungen:
 Biokraftstoffquoten/Subventionen
- Nutzungsprioritäten (Biogas, Biokraftstoffe,...)

Gliederung

Fallstudie 1:
Einführung neuer Antriebstechnologien in der Automobilindustrie

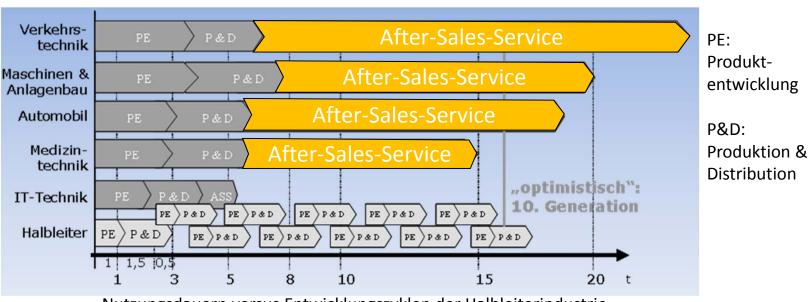
Fallstudie 2:
Aufarbeitung von Ersatzteilen in Closed Loop Supply Chains

- Rahmenbedingungen
- Entscheidungsunterstützungssystem
- Anwendung


3 Fazit

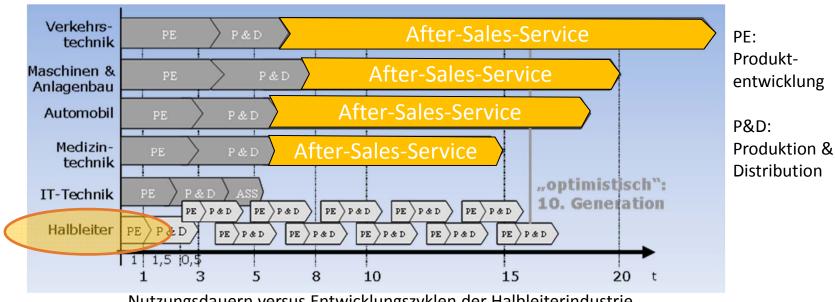
Rahmenbedingungen

Ersatzteilversorgungspflicht in der Nachserie


Nutzungsdauern versus Entwicklungszyklen der Halbleiterindustrie

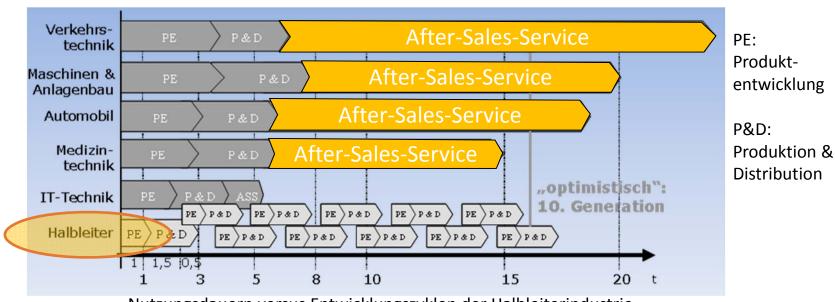
Rahmenbedingungen

Ersatzteilversorgungspflicht in der Nachserie


Nutzungsdauern versus Entwicklungszyklen der Halbleiterindustrie

Rahmenbedingungen

Ersatzteilversorgungspflicht in der Nachserie


Nutzungsdauern versus Entwicklungszyklen der Halbleiterindustrie

Rahmenbedingungen

Ersatzteilversorgungspflicht in der Nachserie

Nutzungsdauern versus Entwicklungszyklen der Halbleiterindustrie

ABER:

- Zeitlich begrenzte Verfügbarkeit von Technologien/Produktionskapazitäten
- Zulieferer stellen erforderliche Bauteile nicht mehr her (Abkündigung)
- Lagerfähigkeit von Bauteilen/Baugruppen begrenzt

Rahmenbedingungen

Herstellerstrategien

Abschlusslos

- + Größendegressionseffekte
- Kapitalbindung
- Fehlprognosen

Rahmenbedingungen

Herstellerstrategien

Abschlusslos

- + Größendegressionseffekte
- Kapitalbindung
- Fehlprognosen

Nachfertigung

- Nur wenn Technologie verfügbar
- Nur wenn Zulieferbauteile noch verfügbar

Rahmenbedingungen

Herstellerstrategien

Abschlusslos

- + Größendegressionseffekte
- Kapitalbindung
- Fehlprognosen

Nachfertigung

- Nur wenn Technologie verfügbar
- Nur wenn Zulieferbauteile noch verfügbar

Re-Design

- Kapitalintensiv
- zeitintensiv

Rahmenbedingungen

Herstellerstrategien

Abschlusslos

- + Größendegressionseffekte
- Kapitalbindung
- Fehlprognosen

Nachfertigung

- Nur wenn Technologie verfügbar
- Nur wenn Zulieferbauteile noch verfügbar

Re-Design

- Kapitalintensiv
- zeitintensiv

Aufarbeitung von Bauteilen/-gruppen gebrauchter Geräte

Vorteilhaftigkeit? Herausforderungen?

Rahmenbedingungen

Herstellerstrategien

Abschlusslos

- + Größendegressionseffekte
- Kapitalbindung
- Fehlprognosen

Nachfertigung

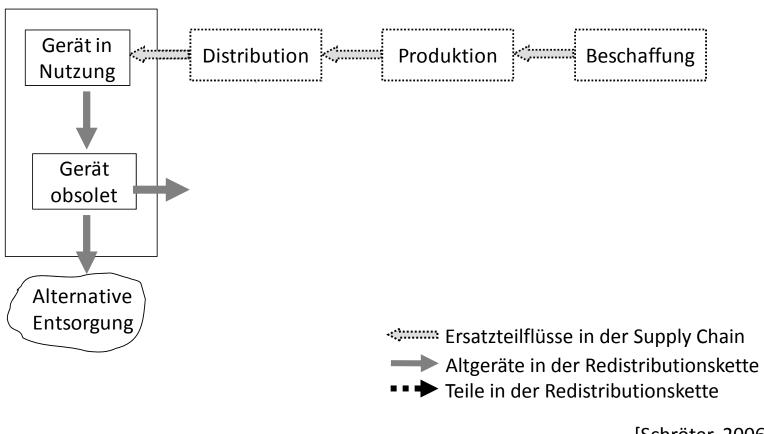
- Nur wenn Technologie verfügbar
- Nur wenn Zulieferbauteile noch verfügbar

Re-Design

- Kapitalintensiv
- zeitintensiv

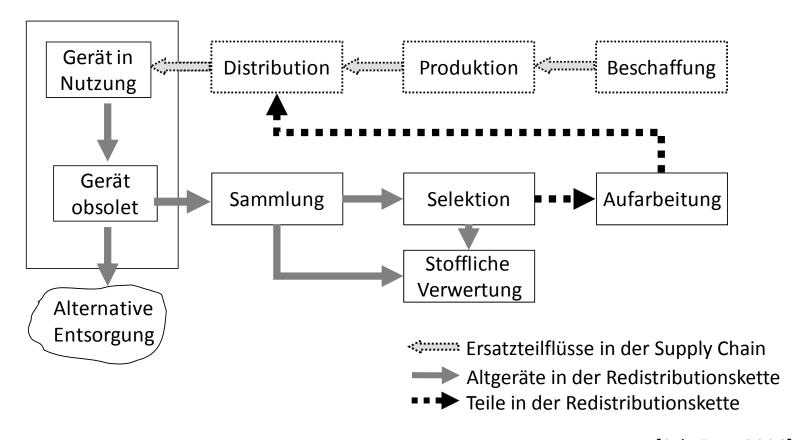
Aufarbeitung von Bauteilen/-gruppen gebrauchter Geräte

Vorteilhaftigkeit? Herausforderungen?


Entscheidungsunterstützungssystem zur strategischen Planung von Closed-Loop Supply Chains (CLSC) zur Ersatzteilversorgung

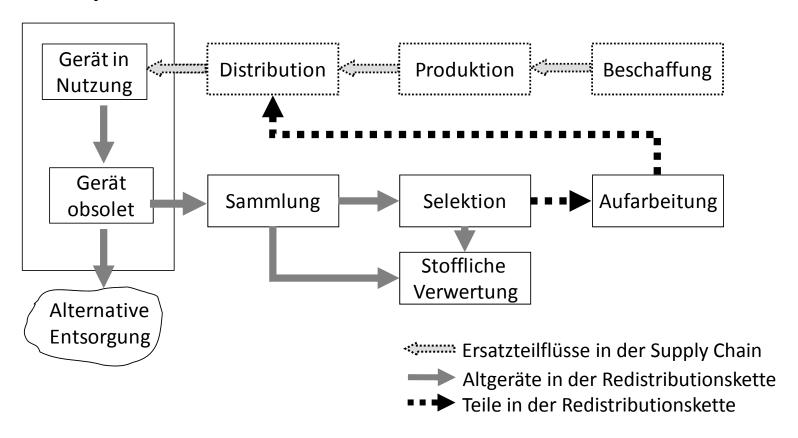
Entscheidungsunterstützungssystem

Systemanalyse



Entscheidungsunterstützungssystem

Systemanalyse



Entscheidungsunterstützungssystem

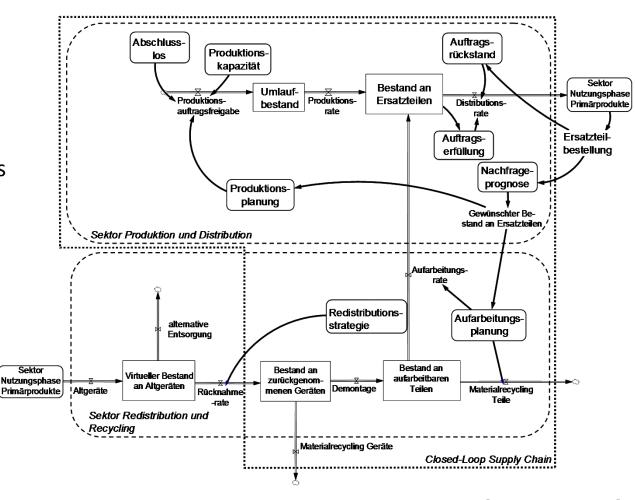
Systemanalyse

Notwendigkeit der Erweiterung der Systemgrenzen

[Schröter, 2006]

• Berücksichtigung der erweiterten (Closed Loop) Supply Chain

Bildnachweis: Schröter 2006

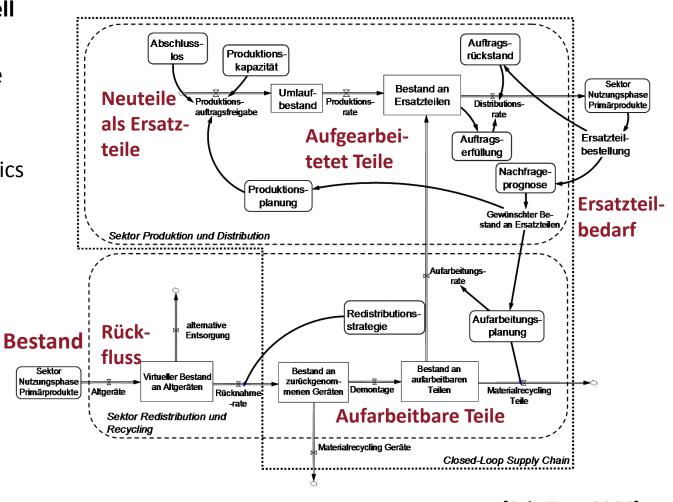


Entscheidungsunterstützungssystem

Simulationsmodell

- Kontinuierliche
 Simulation
- Methode: System Dynamics

[Schröter, 2006]

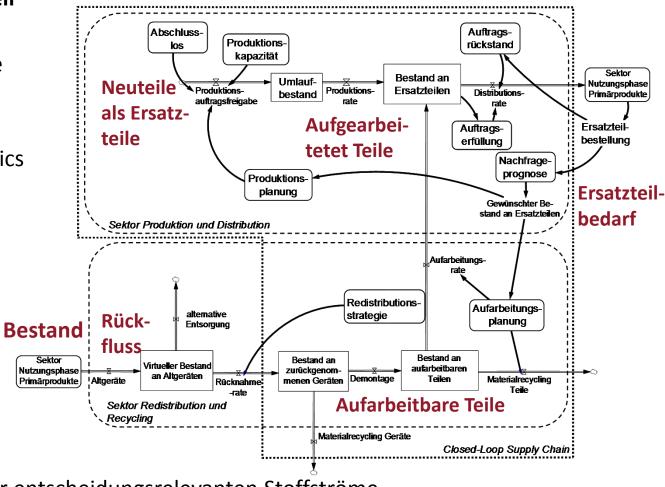

Bildnachweis: Schröter 2006

Entscheidungsunterstützungssystem

Simulationsmodell

- Kontinuierliche
 Simulation
- Methode: System Dynamics

[Schröter, 2006]


Bildnachweis: Schröter 2006

Entscheidungsunterstützungssystem

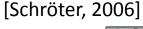
Simulationsmodell

- Kontinuierliche
 Simulation
- Methode: System Dynamics

Ermittlung der entscheidungsrelevanten Stoffströme

Bildnachweis: Schröter 2006

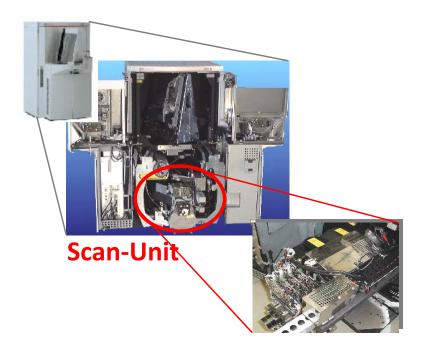
Entscheidungsunterstützungssystem


Unsicherheiten:

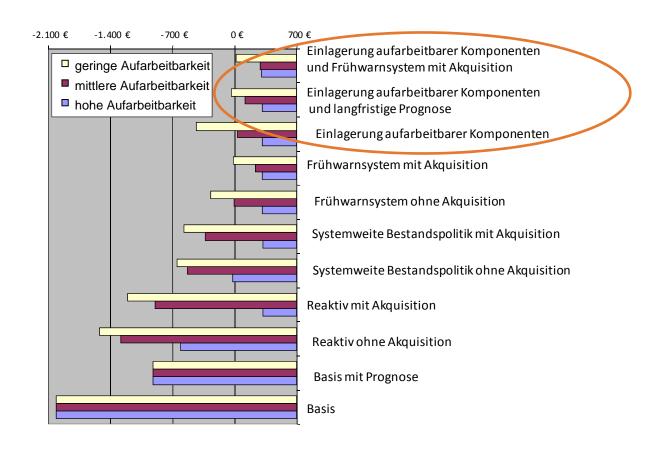
Simulations experimente:

- Rückflussmenge
- Rückflusszeitpunkt
- Zustand der Alt-Teile
- Nachfrage nach Ersatzteilen
- → Variation der Rückflussquote
- → Variation der Nutzungsdauer der Neugeräte
- → Variation der Aufarbeitungsmöglichkeiten
- → Variation der Nachfrage in der Nachserie

Szenario- und Sensitivitätsanalysen zur Berücksichtigung der Planungsunsicherheiten



Anwendung


Ersatzteilversorgung eines medizintechnischen Gerätes

- "ADC Compact" der Agfa-Gevaert AG
- Einsatz in Krankenhäusern und Arztpraxen
- Scanner als wichtigstes Ersatzteil

Nutzung der durch eine Aufarbeitung von Komponenten zurückgenommener Geräte entstehenden Freiheitsgrade ist vorteilhaft

Anwendung

Handlungsempfehlungen

- Nutzung von Ressourcen aus Recycling/Aufarbeitung birgt ökonomische Potenziale
- Aufarbeitung von Teilen aus Altgeräten kann Beitrag zur Reduzierung der Risiken der Ersatzteilversorgung während der Nachserie leisten
- Chance zur Reduzierung der Lagerbestände
- Chance zur Reduzierung von Fehlbeständen

Herausforderungen

- Aufbau einer Closed Loop Supply Chain
- Kooperation und Koordination zwischen den Akteuren erforderlich
- Informationsflüsse und -systeme
- → Komplexitätssteigerung

Gliederung

Fallstudie 1:
Einführung neuer Antriebstechnologien in der Automobilindustrie

Fallstudie 2:
Aufarbeitung von Ersatzteilen in Closed Loop Supply Chains

3 Fazit

Fazit aus den Fallstudien

Planungsaufgaben:

- Explizite Berücksichtigung zukünftiger gesellschaftlicher, umweltrechtlicher sowie ressourcen- und emissionsorientierter Anforderungen im Rahmen der Produktionsplanung
- Es bestehen große Planungsunsicherheiten:
 - Entwicklung der rechtlichen Rahmenbedingungen
 - Entwicklung der Kundenpräferenzen
 - Technische Entwicklung / Produktinnovationen
 - Entwicklung der Ressourcenverfügbarkeit
 - Rückflüsse/Produktzustand bei Kreislaufstrategien

Im Rahmen der Planung sind zunehmend komplexe Planungsaufgaben mit hohen Unsicherheiten zu bewältigen

Fazit aus den Fallstudien

Modellbasierte Entscheidungsunterstützung:

- Eine modellbasierte Entscheidungsunterstützung ist notwendig, da die Wirkung komplexer Gesetze, veränderlicher Rahmenbedingungen und innovativer Herstellerstrategien nicht mehr intuitiv abgeschätzt werden kann
- Modellierung:
 - Nutzung eines geeigneten Detailierungsgrades
 - Erfassung und Bewertung aller entscheidungsrelevanten Stoffströme
 - Einsatz techno-ökonomischer Modelle als Basis der Entscheidungsunterstützung
 - Berücksichtigung der Planungsunsicherheiten, z.B. über Szenarien,
 Sensitivitätsanalysen

Stoffstrombasierte Entscheidungsunterstützungssysteme als Grundlage der Planung

Aufgaben für das Selbststudium

- 1. Charakterisieren Sie die beiden Fallstudien hinsichtlich der in Episode 1 dargestellten Aspekte (jeweils mit Erläuterung):
 - Liegt Kuppelproduktion vor?
 - Welche Umweltbasisstrategie wird verfolgt?
 - Welche Planungsaufgaben bestehen auf welcher Planungsebene?
- 2. Welchen gesellschaftlichen bzw. ressourcen- und emissionsbasierten Planungsunsicherheiten bestehen in der strategischen und taktischen Planung derzeit a) für einen KfZ-Hersteller und b) für einen Energieerzeuger? Welche Szenarien resultieren hieraus im Rahmen einer Entscheidungsunterstützung?
- 3. Informieren Sie sich über 2 weitere Fallstudien, in denen stoffstrombasierte Entscheidungsunterstützungssysteme als Grundlage für die Planung entwickelt wurden! Literaturhinweise:
 - a. Arretz, M.; Jungmichel, N.; Meyer, N. (2009): Kumulierte Emissionsintensität in globalen Wertschöpfungsketten Praxisbeispiel Textilindustrie. Umweltwirtschaftsforum 17, Seiten 201–209.
 - b. Chang, L.; Mrowietz, M.; Engel, B.; Holbein, D.; Spengler, T.S.; Walter, G. (2009): KEI ein neuer Ansatz zur Bewertung von Produktionsstandorten eines Unternehmens. Umweltwirtschaftsforum 17, Seiten 211–218.
 - c. Steinborn, J.; Judkowiack, D.; Walther, G. (2010): Aufarbeitung von Geldgewinnspielgeräten und deren Komponenten. Umweltwirtschaftsforum 18, Seiten 131–138.
 - d. Kieckhäfer, K.; Walther, G.; Spengler, T.S. (2009): Konzeption einer Entscheidungsunterstützung für die Entwicklung von Produktstrategien im Automobilsektor. In: Geldermann, J.; Lauven, L.-P. (Hrsg): Einsatz von OR-Methoden zur Entscheidungsunterstützung, Shaker, Aachen, 5-21
 - e. Spengler, T.; Walther, G.; Queiruga, D. (2005): Formulierung und Anwendung eines Planungsmodells zur Standortwahl von Recyclinganlagen für Haushaltsgroßgeräte in Spanien. *Logistik Management*, Sonderheft Sustainability and Logistics, Heft 1/2005, S. 25-41.
 - f. Jahns, P.; Menssen, I. (2010): Ressourceneffizienz in produzierenden Unternehmen Erfahrungen aus Beratungsprogrammen in NRW. Umweltwirtschaftsforum 18, Seiten 165-170.

Literatur und weiterführende Quellen

- Walther, G.; Schatka, A.; Spengler, Th. S. (2012): Design of regional production networks for second generation synthetic bio-fuel A case study in Northern Germany. *European Journal of Operational Research* 218 (1), pp. 280–292.
- Schatka, A. (2011): Strategische Netzwerkgestaltung in der Prozessindustrie Eine Untersuchung am Beispiel der Produktion von synthetischen Biokraftstoffen. Gabler-Verlag, Wiesbaden.
- Walther, G. (2010): Nachhaltige Wertschöpfungsnetzwerke Überbetriebliche Planung und Steuerung von Stoffströmen entlang des Produktlebenszyklus. Gabler-Verlag, Wiesbaden.
- Schröter, M. (2006): Strategisches Ersatzteilmanagement in Closed-Loop Supply Chains Ein systematischer Ansatz. DUV, Wiesbaden.
- Spengler, T.; Herrmann, C. (Hrsg.) (2004): Stoffstrombasiertes Supply-Chain-Management in der Elektro(nik)industrie zur Schließung von Materialkreisläufen: Projekt StreaM. Verein Deutscher Ingenieure. Fortschritt-Berichte VDI: Reihe 16, Technik und Wirtschaft, Nr. 169, Düsseldorf.

Anmerkung zu den rechtlichen Grundlagen: Die Rechte der Bilder und Graphiken liegen, sofern nicht anders angegeben, beim Verfasser der Folien. Die Folientexte beziehen sich, wenn nicht anders angegeben, auf eigene Forschungs-, Lehr- und Praxistransfer-Tätigkeiten und sind deshalb bei deren Verwendung zu zitieren.

